
Scalability of quantum chemistry codes on BlueGene/P and challenges for sustained petascale performance
Jeff R. Hammond (jhammond@mcs.anl.gov) with contributions from Vitali Morozov

Argonne National Laboratory — Leadership Computing Facility

Atomic integrals codes

How well do atomic integral codes perform?

Atomic integral codes in Dalton and NWChem hit between 10 and 150 Mflop/s,
as measured both by large scale direct SCF calculations and small integral-only
tests. The highest flop rate is observed for heavily contracted basis sets, while
common Pople and Dunning basis sets hit approximately 50 Mflop/s. It is clear
that the CPU spends very little time performing floating-point arithmetic.

Using the HPM counters, the instruction distribution of two-electron integral
formation for a neon atom with the cc-pVTZ was produced.

instruction rate (per cycle)
BGP PU0 JPIPE ADD SUB 0.83
BGP PU0 IPIPE BRANCHES 0.37
BGP PU0 IPIPE ADD SUB 0.30
total IPIPE/JPIPE 2.25
BGP PU0 DCACHE HIT 0.27
BGP PU0 ICACHE HIT 0.15
BGP PU0 DATA LOADS 0.15
BGP PU0 DATA STORES 0.05
BGP PU0 FPU OTHER LOADS 0.05
BGP PU0 FPU OTHER STORES 0.02
BGP PU0 FPU FMA 2 0.02
BGP PU0 FPU MULT 1 0.01

In short, atomic integral computation is primarily integer and logical operations
followed by data movement, then instruction movement. Floating-point
operations occur at a rate of less than 0.04 flop/cycle. While bookkeeping is
necessary to compute atomic integrals, significant L1 traffic indicates register
spilling due to fat inner loops and ∼0.2 flop/load suggests unnecessary data
access.

Schwarz screening saves flops but does it save time?

The following example is for a square array (R=edge) of neon atoms with the
cc-pVDZ basis (NAO = 80). The data structure required for Schwarz screening
is N2

AO, which is larger than L3 cache for a non-trivial system. Because (ij |ij)
can be computed more easily than a general 2-electron integral quartet,
Schwarz screening should be done only on the fly and only when necessary.

R Gflop Time Mflop/s Gflop Time Mflop/s Flop ratio Time ratio
1.0 5.3 142.2 37.2 5.3 142.9 37.3 99.4% 99.5%
2.0 4.2 112.2 37.3 4.6 121.6 37.8 90.8% 92.3%
3.0 1.8 47.4 37.2 2.7 65.4 40.9 65.9% 72.4%
4.0 0.7 19.5 37.2 1.4 26.8 50.6 53.4% 72.6%
8.0 0.4 11.2 37.2 0.9 12.9 68.3 47.3% 86.7%

16.0 0.3 8.9 37.2 0.8 10.5 75.9 41.6% 84.8%

Case study in tuning for BlueGene/P

Profiling results on multiple architectures revealed that a non-trivial amount of
time in the triples evaluation of CCSD(T) is spent in hand-written loop code with
complex memory access patterns.

old new
Measure TRPDRV DGEMM TENGY TENGY
Gcycles 1.97 1.15 0.822 0.428

Gflop 3.12 2.94 0.173 0.166
Mflop/s 1345 2179 179.9 329.1

Extensive tuning lead to an assembly-intrinsic implementation which required
approximately half the cycles for a 25% speed-up in the entire computation (not
including communication). While this operation is far from peak floating-point
performance due to the fixed ratio of flops per byte, the new kernel requires only
12.5% more cycles than the estimated theoretical minimum.

The second step, which is critical for BGP given the need for thread-assisted
computation and the limited memory-per-node, was to multithread TENGY. The
performance improvements relative to the optimal single-threaded version are
1.83 and 3.22 for two and four threads, respectively. The improvement of the
optimal four-thread version relative to the original code is a near-perfect 3.88.

ARMCI Performance on BlueGene/P

Remote accumulate of non-contiguous memory is critical to quantum chemistry codes. Because DCMF does not support non-contiguous
operations or accumulate, passive remote progress in ARMCI did not occur in the original implementation (See M. K. Krishnan, J. Nieplocha, M.
Blocksome and B. Smith, “Evaluation of Remote Memory Access and Global Arrays Programming Model on the Blue Gene/P Supercomputer.” In
Parallel Programming Models and Systems Software for High-End Computing, 2008).

The first solution to the progress issue was to use “interrupt mode” which makes incoming messages a priority. However, an interrupt wipes the
registers and kills performance of BLAS operations. The second solution was to spawn a thread to continuously invoke
DCMF Messager advance() which ensures one-sided progress in ARMCI. This provides 65% (25%) of peak BW for contiguous
(non-contiguous) messages of only 900 doubles.

We are currently working on extending the DCMF implementation of ARMCI to use more robust helper threads for communication offloading and
active-messages for packing non-contiguous buffers.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000 1e+06

ba
nd

w
id

th
 (

M
B

/s
)

buffer size (bytes)

ARMCI 2D Acc performance on BlueGene/P

max
interrupts

threads
neither

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 256 512 1024 2048 4096

tim
in

g
(s

)

nodes (procs)

NWChem - role of interrupts

VN (OFF)
VN (ON)

DUAL (OFF)
DUAL (ON)
SMP (OFF)
SMP (ON)
JAGUAR

The practical manifestion of improved ARMCI performance in the NWChem CCSD(T) code is shown above for the water octamer. Using interrupts
improves the iterative time for the CCSD equations by 14-44% and the (T) step (not shown) by approximately 50%. Integration of thread-assisted
ARMCI and newly-developed OpenMP parallelism in the (T) driver are expected to produce performance rivaling Jaguar (XT4) for the same
number of nodes and cores despite the large discrepancy in memory-per-core and power consumption.

Tensor operations

Coupled-cluster methods are built upon tensor contractions. Large parallel calculations in the spin-orbital formalism require numerous array
permutations in order to utilize DGEMM for the floating-point intensive portion of the contraction. Because it is generally impossible to compete with
vendor-optimized BLAS libraries, we focus on the permutation portion of the tensor contraction. The general algorithm for the 4312 permutation is

forall ji = 0 to di − 1 (i = 1, 2, 3, 4)
B(1 + j2 + d2 ∗ (j1 + d1 ∗ (j3 + d3 ∗ j4))) = c ∗ A(1 + j4 + d4 ∗ (j3 + d3 ∗ (j2 + d2 ∗ j1)))

end
In this case, the optimal algorithm 1324 corresponds to j4 as the innermost loop. While the general trend is obvious, the optimal algorithm —
which gets within 10% of the performance of DAXPY — achieves a delicate balance between register usage and cache access. Neither
maximizing L1 hit rate (for a fixed total) or minimizing L3 fetches alone determines the best loop ordering.

loop order Gcycles excess L1 hits L3 excess
2143 6.222 666.27% 36.62% 451.94%
4213 2.325 186.39% 0.42% 409.58%
1423 2.225 173.96% 0.65% -29.92%
1432 1.881 131.65% 0.56% -29.92%
1342 1.810 122.90% 0.47% -34.54%

ORIGINAL 1.652 103.42% 2.92% 1.98%
3142 1.607 97.93% 0.77% -30.65%
1243 1.151 41.69% 38.06% 2.03%
3241 0.963 18.61% 24.86% 28.85%
1234 0.894 10.10% 35.01% 5.62%
1324 0.893 10.01% 31.61% 5.62%

DAXPY 0.812 - 25.17% -

permutation speedup best order permutation speedup best order
1234 3.325 1234 3124 2.872 1432
1243 2.383 1234 4132 2.550 1432
1342 2.288 1234 2341 2.646 2134
2143 2.375 1234 4321 2.041 2134
2314 2.958 1234 1423 2.617 2143
3214 2.946 1234 3241 2.693 2314
3142 2.345 1243 3421 2.065 2314
4123 2.682 1243 2431 2.750 2341
3412 1.819 1324 2134 2.972 2413
4312 1.857 1324 2413 2.576 2413
1324 2.989 1342 4213 2.208 2413
1432 2.581 1342 4231 2.499 2413

The optimal algorithms for all possible 4-index permutations are given in the second table. The optimal permutation is highly architecture
dependent. Of the 24 permutations, the optimal algorithm for PPC450 is the same as for Core2Duo in only 8 cases.

In addition to autotuning permutations, OpenMP parallelism has been added to the code. Threading efficiency is limited because these operations
and memory-bound.

Comparative performance of SCF/DFT codes

The first test was rubrene (C42H28) with the B3LYP/6-31+G* method.
NWChem runs had thread support in ARMCI. MPQC used only one
thread in SMP mode.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 64 128 256 512

tim
in

g
(s

)

nodes

NWChem versus MPQC

NWChem DUAL
NWChem SMP

MPQC VN
MPQC SMP

The second test was (H2O)N with the SCF/aug-cc-pVDZ method.

 0

 800

 1600

 2400

 3200

 4000

 10 11 12 13 14 15 16
 75

 80

 85

 90

 95

 100

tim
in

g
(s

)

pe
rc

en
t c

ac
he

d

water molecules

NWChem versus Dalton

Dalton
d-SCF

sd-SCF
d-DFT

caching

Test is (H2O)64 with the SCF/aug-cc-pVDZ method (2624 b.f.).

 0

 7000

 14000

 21000

 28000

 35000

 512 1024 2048 4096 8192
 0

 6

 12

 18

 24

 30

tim
in

g
(s

)

pe
rc

en
t c

ac
he

d

nodes

NWChem SCF code performance

direct SCF
semidirect SCF

direct DFT
semidirect caching

Conclusions

1. Big science requires different algorithms than small science.

Example: Most quantum chemistry codes screen integral computation and distribute parallel
tasks at the shell-quartet level. While this is effective at reducing flops, it adds branching and
additional memory-access to inner-loops. The flops which are eliminated may require only a few
thousand cycles, which may be less than the cost required to eliminate them.

Solution: Petascale chemistry calculations have hundreds of atoms and thousands of shell
quartets. Screening (and parallel task distribution) should be done at the atomic scale since
O(108) atom-quartets exist. Only for extreme cases should branching and memory-access be
traded for flops. Given the interatomic distances in large molecules, atom-level screening should
be extremely effective at reducing flops.

2. Code versatility should be implemented higher up in program flow.

Example: the two-electron integral evaluation function — called O(1010) (gigascale) to O(1016)
(petascale) times in the course of a calculation — should not check for a valid state and then
branch into O(10) possible integral evaluators. In 90% of jobs, the call path is invariant.

Solution: modern integral codes often are and should be generated automatically. Generated
code should be integrated into the target program driver such that no branching is necessary.
Program drivers need only be enumerated for valid and useful methods.

3. Architectural variation requires drastic variation in algorithm.

Example: while PPC450 is a quad-core processor with 8 MB L3 cache and 32 KB L1 dcache
and icache per core, similar to commodity offerings, failure to address differences in register
behavior and cycles-per-intruction may lead to significant performance degradation.

Solution: Legacy codes must reverse course and trade flops for registers, while new codes
must enumerate inner-loop codes for at least different architecture types: embedded (e.g. PPC),
commodity/server (e.g. Intel/AMD x86) and data-parallel/vector (GPUs). Scientific developers
must properly abstract out inner-loops from program-flow to allow for independent tuning.

4. Programming models must adapt to multithreading.

Example: Within a single-thread, the one-sided progress assumption of ARMCI is not satisfied
by the DCMF API on BlueGene/P. If we introduce communication threads to address this issue,
lack of progress on a single thread in two-sided communication becomes less relevant. In
addition, persistent all-to-all connectivity in one-sided is not scalable.

Solution: Explicitly multi-threaded codes which dynamically vary the number of communication
and computation threads. The performance loss associated with communication threads
decreases with the available threads-per-node, and few quantum chemistry codes approach
theoretical peak anyways. Dynamic adaptivity in thread distribution ameliorates the performance
loss associated with communication threads.

Description of Codes

NWChem was designed and written for massively parallel architectures starting in the 1990s by
chemists and computer scientists at PNNL. NWChem uses a global-address-space, one-sided
programming model in conjunction with dynamic load-balancing using GA/ARMCI.

Dalton evolved over many years from the codes developed in academic groups primarily located
in Scandanavia. Master-worker parallelism was added to the SCF/DFT modules in a minimalist
fashion using MPI (see D. Jonsson, K. Ruud, P. R. Taylor, Comp. Phys. Comm. 128, 412-433
(2000) for a detailed description). Porting Dalton to the BlueGene/P platform required
straightforward modifications from the options used for earlier IBM Power platforms and changes
in I/O related to use of more than 1000 nodes and a shared file-system.

MPQC is developed at Sandia National Laboratory. In stark contrast to most quantum chemistry
codes, MPQC is written exclusively in C++ and uses a hybrid programming model of
MPI+threads for parallelism. The communication interfaces within MPQC are not yet optimized
for BlueGene/P.

Acknowledgments

Manoj Krishnan (PNNL), Michael Blocksome (IBM) and Pavan Balaji (ANL) for help
understanding and improving ARMCI over DCMF; Ed Valeev (VT) and Curt Janssen (SNL) for
help porting MPQC to BlueGene/P; Graham Fletcher (ANL) and Nick Romero (ANL) for helpful
discussions; Ray Bair (ANL) for encouragement.

